

電子回路故障解析チーム

株式会社クオルテック

背景

近年、モジュール等の軽薄短小化が進み、基板パターンも狭ピッチ化する 傾向にある。それに伴い、パターン間ショートの発生リスクも高くなり、基板焼 損の発生率も高まると考えられる。

そこで、パターン間ショートによる基板焼損モードについて、 再現実験によって検証データを集め、メカニズム解明を試みる。

目的

パターン間ショートによる基板焼損の原因として、 マイグレーションの発生によるショート 導体異物によるショート を想定。

再現実験により焼損発生の有無、焼損モードについて検証する。

assists your "thinking"

株式会社クオルテック

2. テストサンプル 測長

Fig4:表面·断面写真(L/S=150/150)

Fig5:表面·断面写真(L/S=500/150)

株式会社クオルテック

3. マイグレーションの発生方法(ウォータードロップ)

Fig6:イオン交換水滴下写真

Fig7:マイグレーション発生の様子

マイグレーション

イオン交換水を滴下後、電圧印加(1~5V)によりマイグレーションを発生。 発生範囲はマスキングや滴下量でコントロール。

assists your "thinking"

4. マイグレーションの確認

外観、パターン間抵抗測定、SEM/EDS分析により確認。

株式会社フォルテック

5.「Cu」の物性値

密度	8.96 [g/cm ³]		
比熱	0.415【J/g·K】		
融点	1084.4【 】		
<u>温度係数 20</u> *室温 20 のとき	4.3×10 ⁻³ 【/ 】		

温度係数について

温度上昇に伴い導体抵抗が増加する場合、温度係数は「正の値」となる。 一般的な金属である「Cu」も、温度係数は「正の値」であり、温度が「1」高くなると、抵抗は約「0.4%」 高くなる(理論値)。

また、炭素の温度係数は「負の値(-0.5×10⁻³【/】)」であり、これは、炭素の抵抗が温度上昇に伴い低下することを示す。

assists your "thinking"

6. マイグレーション箇所の許容溶断電流(1)

Fig10:マイグレーション箇所

1 の温度上昇に 7.06 × 10⁻⁶ 【J】 必要(比熱 0.415 【J/g·K】より)。 融点まで温度上昇させる為には、7.51 × 10⁻³ 【J】 必要 *初期温度を20 として、融点までの温度差は 1084.4 20 = 1064.4 【]

マイグレーション箇所における Cuサイズを予想最大の 350×180×30【µm】と仮定。

体積	1.9 × 10 ⁻⁶ [cm ³]	
質量	17.0 × 10 ⁻⁶ [g]	

assists your "thinking"

株式会社クオルテック

6. マイグレーション箇所の許容溶断電流(2)

20 における金属抵抗:R₂₀、温度係数 ₂₀:4.3×10⁻³【/】 「Cu」融点到達時の金属抵抗(R_{1084.4})は

R_{1084.4}=R₂₀{1 + ₂₀(1084.4 - 20)} 【 】で示される。

融点到達時、マイグレーション箇所の「Cu」抵抗は、 上記式より 約407 と推定される。

2V印加では、5mAの電流 発生電力:10×10⁻³【W】 1sの溶断を考えた場合、「J = W·s」から、10×10⁻³【J】となり、 これはマイグレーションCuを融点まで温度上昇させ、溶断させるのに 十分な熱量と言える(前項より7.51 × 10⁻³【J】以上あればよい)。

マイグレーション箇所の許容溶断電流は 5mA 以下と考える。

株式会社フォルテック

7. 実験方法

電源(+)接続

assists your "thinking"

8. マイグレーションサンプル 再現実験(1)

パターン① - ②間 抵抗値変化

1Vの電圧印加で抵抗は上昇し、**許容溶断電流に至る2Vの電圧印加**では、 パターン - 間の抵抗は**測定不可**(500M 以上) となった(オープンになったと考えられる)。

assists your "thinking"

8. マイグレーションサンプル 再現実験(2)

SEM/EDS分析 実験前後比較

株式会社フォルテック

8. マイグレーションサンプル 再現実験(3)

実験後SEM/EDS(Cu) 拡大像

株式会社フォルテック

8. マイグレーションサンプル 再現実験(4)

マイグレーション発生程度と焼損発生の関係

マイグレーションの幅(mm)	焼損発生の有無	実験n数	
2	無	2	
4	無	2	
5	無	3	幅:2mm
8	無	3	
30	無	2	

幅:30mm

マイグレーション発生程度(幅)に関わらず、 焼損(発煙・発火)の発生は確認されず。

*実験後 パターン - 間の抵抗値は増加(M 単位、500M 以上で測定不可となる)。 *印加電圧 50V までの結果。

assists your "thinking"

8. マイグレーションサンプル 再現実験(5)

マイグレーション箇所の変化(SEM観察像比較)

ー部で「Cu」が溶融した(赤矢印) と思われる箇所が確認された。

Fig19:実験後(0~30Vまで印加)

株式会社クオルテック

8. マイグレーションサンプル 再現実験(6)

過電圧によるパターン破壊

Fig20:80V印加後(全体)

Fig21:80V印加後(パターン破壊箇所)

印加電圧を上げ、 80Vに到達した 瞬間にパターン 破壊が発生。

Fig22:パターン破壊箇所拡大

過電圧で発生するモードは発煙・発火ではなく、パターン破壊。

assists your "thinking"

9. 導体異物ショートサンプル 再現実験(1)

導体異物(Cuパターン片) 写真と許容溶断電流の計算

Fig23:導体異物写真

異物体積	$3.6 \times 10^{-6} \text{[cm}^3\text{]}$
異物質量	32.3 × 10 ⁻⁶ [g]
1 昇温に必要な熱量	13.4 × 10 ⁻⁶ [J]
融点到達に必要な熱量	14.3 × 10 ⁻³ [J]

室温20 でのショート抵抗:0.23 、Cu溶融時の抵抗:1.28 印加電圧1Vでは、780mAの電流 電力:780×10⁻³【W】。 1sでのジュール熱は 780×10⁻³【J】 溶断に至る。

計算上 0.15V、120mAで 18.0×10⁻³【J】となる為、、 異物ショート箇所の**許容溶断電流は、120mA以下**と考えられる。

株式会社
クオルテック

9. 導体異物ショートサンプル 再現実験(2)

電流値と焼損モード

電法店	確認されたモード				
电沭胆	基板発熱	基板変色	発煙	発火	Cuパターン溶融
3A(3h)	あり	なし	なし	なし	なし
4A	あり	あり	あり	あり	あり
6A	不明	あり(一部)	なし	なし	あり (瞬断)

Fig24∶基板变色例

Fig25:Cuパターン溶融

Fig26:Cuパターン溶融(瞬断)

過電流ではパターン瞬断で終了。 電流が小さ過ぎても、大き過ぎても焼損(発煙・発火)には至らない。

assists your "thinking"

9. 導体異物ショートサンプル 再現実験(3)

Fig27:電流 6A 「発煙・発火 なし。パターンの一部が瞬断。ショート箇所変化なし。」

Fig28:電流 3A~11A 「発煙·発火 あり。ショート箇所変化なし。」*0.5A/5minで電流増大

少しづつ流れ・増大していく電流は、焼損に繋がる。

assists your "thinking"

株式会社クオルテック

9. 導体異物ショートサンプル 再現実験(4)

電流 3A~11A 再現実験途中経過写真

Fig29:開始時

Fig30:25min後、5A

Fig31:75min後、10A

Fig33∶85min後、11A

Fig34∶実験後サンプル全体

株式会社クオルテック

assists your "thinking"

Fig32:80min後、10.5A

9. 導体異物ショートサンプル 再現実験(5)

電流 3A~ での熱挙動(サーモグラフィによる観察)

株式会社クオルテック

9. 導体異物ショートサンプル 再現実験(6)

電流 3Aでの熱挙動(サーモグラフィによる観察)

Fig36-1:Cuパターンの熱挙動(3A)

開始10分以降、 大きな温度上昇なし。 平衡状態に。

3Aでは発熱と放熱が平衡状態となり、焼損には至らないと考えられる。 ショート箇所=発熱箇所(高温スポット)では無い。

9. 導体異物ショートサンプル 再現実験(7)

「ショート箇所 = 高温スポット」ではない理由についての考察

異物ショート箇所は細い為、許容溶断電流は小さいが、 隣接する仮想GNDパターンが放熱板の役割を果たし高温にならない。 実際の弱点は「パターン幅 120 µm」部分の中心になると考えられる。 *パターン幅 465 µm 箇所は、許容溶断電流・放熱効果共に120 µm幅より大きい。

assists your "thinking"

9. 導体異物ショートサンプル 再現実験(8)

パターン幅 120 µmが弱点となる理由についての考察

assists your "thinking"

9. 導体異物ショートサンプル 再現実験(9)

ショート箇所が溶融する条件についての考察

Fig37:電流 8A 実験前後 ショート箇所付近 *6Aでは焼損発生せず 8Aにて加速実験

ショート箇所と比較して、周辺パターン幅が圧倒的に広い(有利)場合、 ショート箇所が弱点となり溶融が発生。

株式会社クオルテック

10.ショート位置と発熱箇所(高温スポット)の関係

A、B パターン幅:120µm C パターン幅:465µm

Fig38:ショート箇所

ショート箇所 = 発熱箇所(高温スポット)では無い。

assists your "thinking"

まとめ(1)

マイグレーションによるショートの場合、焼損には至らない。

マイグレーション箇所の許容溶断電流が極めて小さい為、電流が流れた瞬間にリーク タッチ部が瞬断し、絶縁状態に戻る(或いは高抵抗状態になる)。 その為、瞬時にショートモードが回復し、発煙・発火を伴う焼損には至らない。

但し、マイグレーションが発生し続けた場合は別のメカニズムとなる可能性あり。

焼損は「パターンの弱点」を起点として発生する。 よって「ショート箇所 = 焼損箇所」とは限らない。

パターンの幅、厚さ等による各部の許容溶断電流のバランスや、放熱・伝熱効果の影響が 弱点を決めるファクターとなる。

まとめ(2)

電流の流れ方によって焼損モードは変化する。

- モード 「ジュール熱の発生 放熱」の場合、発煙・発火を伴う焼損には至らない。
- モード 急激に過電流が流れた場合、瞬時にパターン弱点部のみが溶断し、ショートが回 復。発煙・発火を伴う焼損には至らない。
- モード パターンを瞬断しない弱い電流が流れ続けた場合、弱点箇所周辺でジュール熱に よるパターンCuの抵抗上昇と基材の炭化、温度上昇による炭素抵抗の低下が発 生、最終的に発煙・発火を伴う焼損に至る。

